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A new scheme for numerical integration of the 1D2V relativistic Vlasov–Maxwell system is
proposed. Assuming that all particles in a cell of the phase space move with the same
velocity as that of the particle located at the center of the cell at the beginning of each time
step, we successfully integrate the system with no artificial loss of particles. Furthermore,
splitting the equations into advection and interaction parts, the method conserves the sum
of the kinetic energy of particles and the electromagnetic energy. Three test problems, the
gyration of particles, the Weibel instability, and the wakefield acceleration, are solved by
using our scheme. We confirm that our scheme can reproduce analytical results of the
problems. Though we deal with the 1D2V relativistic Vlasov–Maxwell system, our method
can be applied to the 2D3V and 3D3V cases.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In a wide range of plasma processes operating in laboratories or astrophysical phenomena, interactions between rel-
ativistic particles and electromagnetic fields play vital roles. For instance, recent laser experiments revealed that a high
intensity laser can accelerate particles to ultra-relativistic speed (see, e.g. Esarey et al. [1]). Non-thermal components
found in spectra of active astrophysical objects, e.g. supernova remnants, gamma-ray bursts, and jets from active galac-
tic nuclei, are interpreted as synchrotron radiation emitted by charged, relativistic particles gyrating about magnetic
field lines.

There are two approaches in order to model such plasmas. One is the fluid approach based on the relativistic magneto-
hydrodynamics (RMHD) and the other is the kinetic approach based on the Boltzmann equation coupled with the Maxwell
equations. Because the fluid approach implicitly assumes that the distribution of particles in the momentum space is the
Maxwell–Jüttner distribution, which is the relativistic extension of the classical Maxwell–Boltzmann distribution, the kinetic
approach is indispensable for dealing with the momentum distribution deviating from the thermal equilibrium. Especially,
dilute plasmas in which collisions between particles composing the plasmas are absent, often called collisionless plasmas,
are known to be modeled by the so-called Vlasov–Maxwell system [2].

At present, the most reliable and reasonable method to simulate dynamical behaviors of collisionless plasmas is the par-
ticle-in-cell (PIC) simulation (see, e.g. Birdsall and Langdon [3]), which calculates the orbits of charged particles by solving
the equation of motion and the configuration of electromagnetic fields by solving the Maxwell equations. In this method, the
momentum distribution of plasmas is approximated by an ensemble of the momentum of each particle placed in the phys-
ical space. Although the number of particles in virtual plasmas produced by a PIC simulation is much smaller than that in real
plasmas, it is known that behaviors of plasmas are well reproduced by the method. Nevertheless, we cannot avoid significant
. All rights reserved.
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numerical noises due to the shortage of particles when we focus on the high momentum tail of the distribution function of
plasma particles.

On the other hand, the direct numerical integration of the Vlasov–Maxwell system (referred to as ‘‘Vlasov simulation”),
which discretizes the momentum space as well as the physical space, does not suffer from such noises. Therefore, some
methods to perform the Vlasov simulation have been developed [4–7]. While Vlasov simulations require higher compu-
tational performance than PIC simulations do, recent developments of computational technology allow us to study plasma
processes by using Vlasov simulations. For example, Mangeney et al. [7] presented a scheme to numerically integrate the
2D3V Vlasov–Maxwell system (the term ‘‘2D3V” means the two-dimensional space associated with the three dimensional
velocity space) and demonstrated that the scheme could simulate the Weibel instability with high accuracy. Valentini
et al. [8] provided a scheme for the integration of the electrostatic 1D2V Vlasov–Poisson system in a uniform magnetic
field. They adopted the polar coordinates in the velocity space, which allows them to perform simulations with a good
energy conservation. The scheme presented by Valentini et al. [9] integrates the Vlasov–Maxwell system in the hybrid
approximation, i.e., they solve the 2D3V electromagnetic Vlasov equation for ions and fluid equations for electrons, based
on the current advance method introduced by Matthews [10]. Suzuki and Shigeyama [11] investigated non-linear behavior
of the Weibel instability in detail by using a scheme similar to that of Mangeney et al. [7]. Schmitz and Grauer [12] per-
formed a series of simulations for the magnetic reconnection and confirmed that their results are consistent with those of
some PIC simulations. However, the attempts stated above treated only non-relativistic plasmas. Investigations into the
numerical integration of the relativistic Vlasov–Maxwell system are still rare. Although Besse et al. [13] presented a
scheme for the 1D2V relativistic Vlasov–Maxwell system, they assumed that particles have no dispersion in the transverse
momentum space. Furthermore, there exists another problem that the mass and energy conservations are not always
guaranteed unlike PIC simulations.

In this paper, we propose a new conservative scheme for the numerical integration of the 1D2V relativistic Vlasov–Max-
well system that allows particles to have dispersions in the momentum space. The scheme is based on the semi-Lagrangian
approach, which is extensively used to solve the Vlasov–Maxwell system [13–15]. In Section 2, we introduce the 1D2V rel-
ativistic Vlasov–Maxwell system and some characteristic scales, and then transform the equations for convenience of the
subsequent sections. Section 3 describes the method for the numerical integration of the system. In Section 4, we calculate
three test problems using the scheme proposed in Section 3, the gyration of particles, the Weibel instability, and the wake-
field acceleration. We conclude this paper in Section 5.
2. Formulation

In this section, we present a scheme for the numerical integration of the 1D2V relativistic Vlasov–Maxwell system.
2.1. The relativistic Vlasov–Maxwell system

We consider a plasma whose spatial distribution varies along one direction, which implies that only two components of
the momenta of particles, the longitudinal and the lateral components, need to be calculated. Thus, the 1D2V Vlasov equa-
tion for species s describes the kinetic evolution of the distribution function f sðx; p; q; tÞ (s ¼ e for electrons and s ¼ i for ions)
in the phase space ðx; p; qÞ, where x is the coordinate in the physical space, p is the corresponding coordinate in the momen-
tum space, and q is the coordinate labeling the lateral momentum. In this case, the relativistic Vlasov equation takes the fol-
lowing form:
@f s

@t
þ p

msC
s
@f s

@x
þ Q s Ek þ q

mscC
s B?

� �
@f s

@p
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� �
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1þ p
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þ q
msc
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s

ð2Þ
represents the Lorentz factor. The constants ms and Qs represent the mass and the charge of a species s. c is the speed of light.
The electric field appearing here has two components parallel Ek and normal E? to the x-axis, while the magnetic field has
only one component B? normal to the x-axis. Here the normal component of the electric field points to the direction of the
lateral momentum and the electric and magnetic fields are perpendicular to each other. Thus, they are expressed as vector
forms E ¼ ðEk; E?;0Þ and B ¼ ð0;0;B?Þ when the momentum vector is expressed as p ¼ ðp; q;0Þ. Their time evolutions are
governed by the Maxwell equations,
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where the electric current densities Jk and J? are expressed in terms of f sðx; p; q; tÞ as
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2.2. Normalization

For the numerical integration of the equations introduced above, we define the characteristic value for each physical
quantity: 1=xe as the time scale, c=xe as the length scale, mec as the momentum, cmexe=e as the electromagnetic field,
and mex2

e=ð4peÞ as the electric current density. Here xe is the electron plasma frequency defined by
x2
e ¼

4pe2n0

me
; ð6Þ
where e is the elementary charge and n0 is the number density. Normalizing physical variables with these quantities and
using the same notations for normalized quantities, one can obtain the dimensionless Vlasov equation,
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where the Lorentz factor is modified to
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ðRs

mÞ
2 þ p2 þ q2

q
: ð8Þ
Here Rs
m and Rs

q are dimensionless constants defined by
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e
; ð9Þ
respectively. On the other hand, the Maxwell equations lead to the following dimensionless form:
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where the dimensionless electric current densities Jk and J? are expressed in terms of f sðx; p; q; tÞ as
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These two relations close the system.

2.3. Transformation of equations

For convenience of the following sections, we transform Eq. (7) into the conservative form and Eq. (10) into the advection
form.

Multiplying Eq. (7) by Csðp; qÞ and some algebraic manipulations lead to the following equation:
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The L.H.S of this equation represents the advection of the rest and kinetic energy of particles along the characteristics of the
Vlasov equation (7), while the R.H.S is interpreted as the exchange of energy between particles and electromagnetic fields.

On the other hand, introducing the following variables:
GðxÞ ¼ E?ðxÞ þ B?ðxÞ
2

; HðxÞ ¼ E?ðxÞ � B?ðxÞ
2

; ð14Þ
one can rewrite the Maxwell equations for the perpendicular components E? and B? as
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2
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2
: ð15Þ
In the following, we integrate the above equations instead of the equations for the components E? and B?.
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3. Strategy for numerical integration

In this section, we describe a method for numerical integration of the dimensionless Vlasov–Maxwell system (7)–(13)
introduced in the previous section.

3.1. Discretization

First, we divide the phase space with the range of ½xmin; xmax� � ½pmin; pmax� � ½qmin; qmax� into Nx � Np � Nq small cells each of
which has the volume DxDpDq. Thus, Dx;Dp, and Dq are
Dx ¼ xmax � xmin

Nx
; Dp ¼ pmax � pmin

Np
; Dq ¼ qmax � qmin

Nq
: ð16Þ
The center of a cell labeled by integers ði; j; kÞ is located at ðx; p; qÞ ¼ ðxi; pj; qkÞ, where
xi ¼ xmin þ Dxði� 1=2Þ for 1 6 i 6 Nx; ð17Þ
pj ¼ pmin þ Dpðj� 1=2Þ for 1 6 j 6 Np; ð18Þ
qk ¼ qmin þ Dqðk� 1=2Þ for 1 6 k 6 Nq: ð19Þ
Next, we define the number of particles of a species s in the cell at time t as,
Ns
ijkðtÞ ¼

Z xiþDx=2

xi�Dx=2
dx
Z pjþDp=2

pj�Dp=2
dp
Z qkþDq=2

qk�Dq=2
dqf sðx;p; q; tÞ; ð20Þ
and the energy of particles contained in the cell at t;
Es
ijkðtÞ ¼

Z xiþDx=2

xi�Dx=2
dx
Z pjþDp=2

pj�Dp=2
dp
Z qkþDq=2

qk�Dq=2
dqCsf sðx;p; q; tÞ: ð21Þ
On the other hand, we discretize electromagnetic fields by defining them only at the positions xi,
Eki ðtÞ ¼ Ekðxi; tÞ; E?i ðtÞ ¼ E?ðxi; tÞ; B?i ðtÞ ¼ B?ðxi; tÞ: ð22Þ
3.2. Splitting of equations

Applying the operator splitting method, Eq. (13) is numerically integrated by two steps. One is the step for the advection
of particles and electromagnetic fields and the other is the step for the exchange of energy between particles and electro-
magnetic fields.

The Vlasov equation (7) is an advection equation with no source term, while the energy Eq. (13) contains advection terms
and a source term. We split the energy Eq. (13) into the two parts as follows:
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q

pEk þ qE?

Cs f s: ð24Þ
One can see that the advection part of the energy Eq. (23) takes the same form as the Vlasov equation (7). Therefore, we
introduce an operator Ap½EkðtÞ;GðtÞ;HðtÞ;Dt� that evolves the variables Ns

ijkðtÞ or Es
ijkðtÞ by a time interval Dt according to

Eq. (7) or (23) for given EkðtÞ; GðtÞ, and HðtÞ (or E?ðtÞ and B?ðtÞ). For the interaction part, we introduce another operator
Ip½EkðtÞ;GðtÞ;HðtÞ;Dt� that evolves the variable Es

ijkðtÞ by a time interval Dt according to Eq. (24) with given EkðtÞ; GðtÞ, and
HðtÞ.

We present a method to calculate the time evolution of the quantities defined by Eqs. (20)–(22). As is the case for the
energy equation, the Maxwell equations contain advection terms and source terms. Thus, we split them into the two parts
as follows:
@G
@t
þ @G
@x
¼ 0;

@H
@t
� @H
@x
¼ 0; ð25Þ

@Ek

@t
¼ �Jk;

@G
@t
¼ � J?

2
;

@H
@t
¼ � J?

2
: ð26Þ
Here we introduce two operators that evolve the variables GiðtÞ and HiðtÞ by a time interval Dt according to Eq. (25) as Ag ½Dt�
and Ah½Dt�. In addition, for the interaction part, we introduce three operators that evolve the variables Eki ðtÞ; GiðtÞ, and HiðtÞ
by a time interval Dt according to Eq. (26) as I e½Dt�; I g ½Dt�, and Ih½Dt�. The explicit procedures of the thus introduced oper-
ators for advection terms are discussed in Section 3.3. Section 3.5 discusses those for source terms. Using the operators intro-
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duced above, we propose a scheme to numerically integrate the relativistic Vlasov–Maxwell system according to the follow-
ing steps:
step 1 : Ns�
ijk ¼ Ap EkðtÞ;GðtÞ;HðtÞ;Dt=2

h i
Ns

ijkðtÞ

Es�
ijk ¼ Ap EkðtÞ;GðtÞ;HðtÞ;Dt=2

h i
Es

ijkðtÞ

G�i ¼ Ag ½Dt�GiðtÞ
H�i ¼ Ah½Dt�HiðtÞ ð27Þ

step 2 : Es��
ijk ¼ Ip EkðtÞ;G�;H�;Dt

h i
Es�

ijk

Eki ðt þ DtÞ ¼ I e½Dt�
G��i ¼ I g ½Dt�G�i
H��i ¼ Ih½Dt�H�i ð28Þ
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��
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h i
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ijk

Es
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i ;Dt=2

h i
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ijk
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The electric current densities J? and Jk, which are necessary for the integration of the source terms, are evaluated between
step 1 and step 2. The procedure for the evaluation is explained in Section 3.4.

3.3. Advection part

For the integration of the advection part, we make use of the characteristics of the Vlasov equation (7),
dx
dt
¼ p

Cs ;
dp
dt
¼ Rs

q Ek þ q
Cs B?

� �
;

dq
dt
¼ Rs

q E? � p
Cs B?

� �
; ð30Þ
which are equivalent to the equation of motion of a relativistic charged particle, because there exists a reliable scheme for
the integration of these equations widely used in PIC simulations [3], the Buneman–Boris method.

At first, using the Buneman–Boris method, we obtain the orbit of a particle located at the center of each cell ðxi; pj; qkÞ at
time t. We thus calculate the coordinates x0i; p

0
j; q
0
k

� �
of the particle at t þ Dt as
x0i ¼ xi þ
Z tþDt

t

p
Cs dt;

p0j ¼ pj þ
Z tþDt

t
Rs

q Ek þ q
Cs B?

� �
dt;

q0k ¼ qk þ
Z tþDt

t
Rs

q E? � p
Cs B?

� �
dt:

ð31Þ
We then assume that the other particles in the same cell move with the same velocity as the particle having been located at
the center, which should be a good approximation for a sufficiently small cell. The relation between the size of the cell and
x

p,q

x

p,q
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4 5 6

7 8 9

1 2

3

4 5
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7

8 9

Fig. 1. Schematic views of the integration of the advection part.
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the accuracy of the above treatment is discussed in Section 3.7 and examined in Section 4.1. The intuitive explanation for the
scheme is shown in Fig. 1. In each panel, the horizontal axis represents the x-axis and the vertical axis represents the p- and
q-axes. Although we draw the phase space as two-dimensional, actual calculations are performed in the three dimensional
phase space ðx; p; qÞ. The procedure to calculate the number of particles in the cell (cell 5) located at the center of the sur-
rounding nine cells at t þ Dt is as follows: (1) calculate the orbit of a particle located at the center of each cell (the left panel)
using the Buneman–Boris method. (2) Count the number of particles entering the original position of cell 5 under the
assumption for a uniform distribution of particles inside each cell. In other words, the number of particles in cell 5 at
t þ Dt is defined as that of particles located in the gray zones in the right panel of Fig. 1. Therefore, an explicit expression
of the operator Ap becomes
Ap½Eki ;Gi;Hi;Dt�Ns
ijkðtÞ ¼

Xiþ1

i0¼i�1

Xjþ1

j0¼j�1

Xkþ1

k0¼k�1

Ns
i0 j0k0 ðtÞ �

x0i0 � xi0
�� ��

Dx

p0j0 � pj0

��� ���
Dp

q0k0 � qk0
�� ��

Dq
: ð32Þ
Here the summations in this expression run over only the cells overlapping the original position of the cell at ðxi; pj; qkÞ, i.e.,
cell 5, cell 6, and cell 7 for the case of Fig. 1. We evolve the energy contained in a cell Es

ijkðtÞ in the same way. In this method,
the number (or the mass) and the kinetic energy of particles are conserved for each step.

The advection part of the Maxwell Eq. (25) consists of two linear advection equations with a constant velocity that have
exact solutions in the form of
Gðx; tÞ ¼ Gðx� t;0Þ; Hðx; tÞ ¼ Hðxþ t;0Þ: ð33Þ
Therefore, assuming Dt ¼ Dx, one finds that the relations
Giðt þ DtÞ ¼ Gi�1ðtÞ; Hiðt þ DtÞ ¼ Hiþ1ðtÞ; ð34Þ
hold. We use these relations for the integration of the advection part of the Maxwell equation. Because this method is based
on the exact solution of a linear advection equation, no numerical diffusion occurs.

3.4. Interpolation

As we noted in Section 3.2, the electric current density needs to be evaluated for integration of the interaction part. In the
following, we discuss a method to evaluate the electric current density. The key ingredient for the method is interpolation of
the distribution function f sðx; p; q; tÞ. We know the number Ns

ijkðtÞ of particles and the energy Es
ijkðtÞ contained in each cell.

From the definition of the two variables, the distribution function f sðx; p; q; tÞ must satisfy Eqs. (20) and (21) for given
Ns

ijkðtÞ and Es
ijkðtÞ. In other words, we have two constraints. So the interpolation function, which is defined as f s

ijkðtÞ, generally
have the form with two unknown coefficients,
f s
ijkðtÞ ¼ aijk þ bijkgðx;p; qÞ; ð35Þ
where gðx; p; qÞ is a function and the coefficients aijk and bijk are determined from the constraints (20) and (21). Here, to deter-
mine the form of the function gðx; p; qÞ, we consider the meaning of the constraints. The constraints, (20) and (21), are the
zeroth-order and the first-order moments of the Lorentz factor. Then, we assume the interpolation function f s

ijkðtÞ to take the
form of
f s
ijkðtÞ ¼ aijk þ bijkC

s; ð36Þ
We should note that there are many other candidates for the form of the interpolation function. If we calculate time evolu-
tions of other macroscopic variable for each cell, e.g. momenta of particles, second-order moment of the Lorentz factor, and
so on, or use the number Ns

i�1j�1;k�1ðtÞ and the energy Es
i�1j�1;k�1ðtÞ of particles in neighboring cells, we can construct an inter-

polation function including more correction terms,
f s
ijkðtÞ ¼ aijk þ bijkC

s þ cijkhðx;p; qÞ þ � � � ; ð37Þ
where hðx; p; qÞ is a function corresponding to the additional macroscopic variable. In this study, we use the interpolation
function (36), which is a linear function of the energy of particles, to reduce the computational cost.

Substitution of the interpolation function (36) into the constraints and some algebraic manipulations lead to
aijk ¼
ðCsÞ2
D E

jk
Ns

ijkðtÞ � hC
sijkEs

ijkðtÞ

DxDpDq hðCsÞ2ijk � hC
si2jk

h i ; ð38Þ

bijk ¼
Es

ijkðtÞ � hC
sijkNs

ijkðtÞ

DxDpDq ðCsÞ2
D E

jk
� Csh i2jk

� 	 ; ð39Þ
where the bracket represents the following integral:
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Appendix A gives the expressions of the variables hCsijk and hðCsÞ2ijk. Thus the distribution function f s
ijk takes a uniform value

in each spatial cell i. Using this interpolation function, the electric current densities due to a particle species s are evaluated
as
jsk
ijk ¼ Rs

q

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

p
Cs f s

ijkðtÞdpdq ¼ Rs
qDpDq aijk

p
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D E
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þ bijkhpijk
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ð41Þ

js?
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q

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

q
Cs f s
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q
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D E
jk
þ bijkhqijk
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ð42Þ
in non-dimensional forms.
However, the thus constructed function f s

ijk is not guaranteed to take positive values at all points in the region
½pj � Dp=2; pj þ Dp=2� � ½qk � Dq=2; qk þ Dq=2� for each i. Because the distribution function of real plasmas must be positive
at any point in the phase space, the interpolation is modified if f s

ijk takes a negative value. We use the following simple
expressions for jsk

ijk and js?
ijk :
jsk
ijk ¼ Rs

q
p
Cs

D ENs
ijkðtÞ
Dx

; ð43Þ

js?
ijk ¼ Rs

q
q
Cs

D ENs
ijkðtÞ
Dx

; ð44Þ
instead of the expressions (42) in cells with negative f s
ijkðtÞ.

One can evaluate the electric current density by summing up these variables as
Jki ¼
X

s

X
j

X
k

jsk
ijk; J?i ¼

X
s

X
j

X
k

js?
ijk : ð45Þ
3.5. Interaction part

In this subsection, we propose a method to integrate the interaction part with respect to time. This method conserves the
sum of the kinetic energy of particles and the electromagnetic energy.

Eqs. (26) are discretized as
Eki ðt þ DtÞ ¼ Eki ðtÞ � Jkðt þ Dt=2ÞDt;

Giðt þ DtÞ ¼ GiðtÞ �
J?ðt þ Dt=2Þ

2
Dt;

Hiðt þ DtÞ ¼ HiðtÞ �
J?ðt þ Dt=2Þ

2
Dt;

ð46Þ
where the electric current densities are evaluated beforehand according to the procedure described in the previous subsec-
tion. These equations give expressions for the operators I e; I g , and Ih. On the other hand, to obtain the energy Es

ijkðtÞ of par-
ticles in a cell evolved by the interaction part of the energy, Eq. (24) is integrated with respect to p and q as
@

@t

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2
Csf s dpdq ¼ Ek

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

p
Cs f s dpdqþ E?

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

q
Cs f s dpdq; ð47Þ
which means that the total energy of particles in a cell is changed by interactions between particles and electric fields. Dis-
cretizing this equation, we then propose the following scheme for the integration:
Es
ijkðt þ DtÞ � Es

ijkðtÞ
Dt

¼ Ekðt þ DtÞ þ EkðtÞ
2

jsk
ijk þ

E?ðt þ DtÞ þ E?ðtÞ
2

js?
ijk ; ð48Þ
which gives an expression for the operator Ip.
In the following, we will show that this procedure conserves the total energy. Summing up the above equation with re-

spect to j; k, and s, and then substituting the relations (45) and (46) into the result, one obtains
X
jks

Es
ijkðt þ DtÞ �

X
jks

Es
ijkðtÞ ¼ Eki ðtÞ �

Jki ðtÞ
2

Dt

" #
Jki ðtÞDt þ GiðtÞ þ HiðtÞ �

J?i ðtÞ
2

Dt
� 	

J?i ðtÞDt; ð49Þ
which represents the change of kinetic energy of particles after a time step in this scheme. The change of the electromagnetic
energy is obtained by summing the square of each of (46),
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½Eki ðt þ DtÞ�2

2
þ ½Giðt þ DtÞ�2 þ ½Hiðt þ DtÞ�2

¼ ½E
k
i ðtÞ�

2

2
þ ½GiðtÞ�2 þ ½HiðtÞ�2 � Eki ðtÞ �

Jki ðtÞ
2

Dt

" #
Jki ðtÞDt � GiðtÞ þ HiðtÞ �

J?i ðtÞ
2

Dt
� 	

J?i ðtÞDt ð50Þ
By summing up both sides of Eqs. (49) and (50) with respect to i, one can easily check that the total energy in a region
½xi � Dx=2; xi þ Dx=2� � ½pmin; pmax� � ½qmin; qmax� is conserved:
X
ijks

Es
ijkðtÞ þ

Eki ðtÞ
h i2

2
þ ½GiðtÞ�2 þ ½HiðtÞ�2 ¼ const: ð51Þ
In other words, the procedures I e; I g ; Ih, and Ip expressed by (46) and (48) give a conservative scheme for the integration
of the interaction part of the relativistic Vlasov–Maxwell system.

3.6. Conditions for the time interval

In Sections 3.2–3.4 and 3.5, we present procedures that evolve the number and the energy of particles in a cell and elec-
tromagnetic fields. In order for the procedures to work, the time interval Dt is required to satisfy some conditions.

As we noted in Section 3.3, the scheme (34) requires that the time interval Dt must be equal to Dx. Furthermore, the
scheme for integration of the advection part of the Vlasov equation (32) requires that the displacement of a particle by inte-
gration of Eq. (30) along the x-, p-, and q-axes must not exceed the intervals Dx;Dp, and Dq. In short, particles must not jump
over a cell. These conditions impose the value of the time interval to satisfy
Dt ¼ Dx; Dt <
Dp

max Eki
��� ���þ B?i

�� ��� � ; Dt <
Dq

max E?i
�� ��þ B?i

�� ��
 � ; ð52Þ
where maxðAiÞ represents the maximum of the variable Ai for all i.

3.7. Accuracy of the scheme

Finally, we mention the accuracy of our scheme proposed in this section. As explained above, our scheme is based on var-
ious procedures, such as splitting of equations, the advection part, the interaction part, and the evaluation of the current den-
sity, which makes the mathematical proof of the accuracy of our scheme very difficult. Then, we estimate the accuracy of the
advection of particles, which is likely to be the most inaccurate compared to the other procedures.

In the procedure solving the advection part of the Vlasov equation, all particles in a given cell in the phase space are as-
sumed to move with the same orbit as that of the particle located at the center of the cell. However, this treatment obviously
involves errors to a certain extent, because particles located at the different position from the center must be integrated un-
der different initial conditions. In particular, the difference is most significant for particles located at the vertex of the cell.
Since the difference of the position between particles at the vertex and the center is of the order of Dx;Dp, and Dq, the esti-
mated positions of particles at the vertex contain errors of the order of Dx;Dp, and Dq, which indicates the number of par-
ticles in the cell at the next step contains errors of the order of Dx;Dp, and Dq. Therefore, the procedure solving the advection
part of the Vlasov equation has first-order accuracy in the physical and the momentum spaces.

4. Test problems

In this section, we show results of simulations performed by using the scheme proposed in the previous section. For the
purpose, we solve three test problems, the gyration of particles, the Weibel instability, and the wakefield acceleration. The
gyration of particles is solved to check the accuracy of our scheme. The Weibel instability and the wakefield acceleration are
well-known plasma processes and important in both experimental and astrophysical contexts.

4.1. Gyration of particles

We assume that electrons are uniformly distributed in the physical space with a Gaussian distribution in the momentum
spaces,
f eðx;p; q;0Þ / exp � p2 þ q2

r2

� �
; ð53Þ
where r represents the dispersion in the momentum spaces, and a uniform magnetic field,
Ekðx; 0Þ ¼ E?ðx; 0Þ ¼ 0; B?ðx; 0Þ ¼ B0; ð54Þ
where B0 is a constant. One can easily check that the above configuration is a stationary solution of the Vlasov–Maxwell
system. However, since our scheme suffers from a numerical diffusion as expected in the previous section, the distribution
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function f eðx; p; q; tÞ at t must be slightly different from the initial one f eðx; p; q;0Þ. Then, we adopt the following value � as a
measure of the accuracy of our scheme:
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijk Ne

ijkðtgÞ � Ne
ijkð0Þ

h i2

NxNpNq

vuut
; ð55Þ
where tg represent the gyration period given by mec=ðeB0Þ. Fig. 2 shows the result with r2 ¼ 2:0 and B0 ¼ 1:0. The ranges of the

space coordinate, the longitudinal momentum, and the lateral momentum are given by x 2 �
ffiffiffiffiffiffiffi
2p
p

;
ffiffiffiffiffiffiffi
2p
ph i

; p; q 2 ½�10;10�,
respectively. The periodic boundary is imposed in the physical space, while, in the momentum space, the free boundary con-
dition is imposed. The filled circles represent the values � for various Nxð¼ 110;120;130;140;150;160;170;180; and 190Þ
and fixed Np and NqðNp ¼ Nq ¼ 200Þ, whereas the filled squares represent those for Np ¼ 110;120;130;140;150;
160;170;180, and 190 and Nx ¼ Nq ¼ 200.

The solid line shows that the value � seems to scale roughly as ðDxÞ1:8. The value � is expected to strongly depend on Dp
and Dq rather than Dx in this test problem where particles rotate in the momentum space ðp; qÞ. In other words, the depen-
dence of � on Dx have uncertainty because of the insensitiveness. Therefore, we conclude that the dependence derived above
must be � / ðDxÞ2 essentially. However, this does not mean second-order accuracy in the physical space. Because of the con-
dition Dt ¼ Dx mentioned in Section 3.6, when we double the number of zones Nx in the physical space, the time interval Dt
must be half of the previous value. Therefore, the value � scales as DtDx, which indicates that our scheme has first-order
accuracy in time and the physical space. On the other hand, the dashed line shows that the value � scales as Dp, which con-
firms the estimation in Section 3.7.

4.2. Weibel instability

The Weibel instability is a kind of plasma instabilities caused by anisotropic momentum distributions of collisionless
plasma. The formulation and dispersion relation of the Weibel instability operating in a relativistic one-dimensional plasma
are shown in Appendix B.

For a simulation of the Weibel instability, we treat ions as a uniform background and assume that electrons have the fol-
lowing initial distribution:
f eðx;p; q;0Þ ¼ dðpÞ dðq� qbÞ þ dðqþ qbÞ
2

; ð56Þ
which is approximated in the discretized form by
Ne
ijkð0Þ ¼

1=2 for �Dp=2 < pj < Dp=2

and qb � Dq=2 < qk < qb þ Dq=2;

1=2 for �Dp=2 < pj < Dp=2

and � qb � Dq=2 < qk < �qb þ Dq=2;

0 otherwise

8>>>>>>><
>>>>>>>:

ð57Þ

Ee
ijkð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b

q
=2 for �Dp=2 < pj < Dp=2

and qb � Dq=2 < qk < qb þ Dq=2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b

q
=2 for �Dp=2 < pj < Dp=2

and � qb � Dq=2 < qk < �qb þ Dq=2;

0 otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð58Þ
Here we have introduced a constant qb that represents the bulk momentum of the counter-stream of the plasma. The initial
configuration of the electromagnetic field is
Ek ¼ E? ¼ 0; B? ¼ � cosðkxÞ; ð59Þ
where � is a small parameter ð¼ 10�5Þ and k is the wave number of the perturbation.
We calculate the evolution of a plasma with the above initial condition in the simulation domain whose spatial interval is

given by x 2 ½�p=k;p=k�. The longitudinal momentum ranges are given by p 2 ½�5;5� for qb ¼ 2:065 (the corresponding bulk
velocity is 0:9c), p 2 ½10;�10� for qb ¼ 7:018 (0.99c), and p 2 ½30;�30� for qb ¼ 22:344 (0.999c). The lateral momentum range
is q 2 ½�5;5�. The periodic boundary is imposed in the x direction, while, in the momentum space, the free boundary condi-
tion is imposed.

Fig. 3 shows the time evolutions of the kinetic energy Ke of electrons, the electric energy E, and the magnetic energy B
defined by



Fig. 3. The time evolution of the electron energy, Ke (solid), the electric energy E (dash-dotted), and the magnetic energy B (dashed). The dashed line
represents the theoretical growth rate derived by the linearized analysis.

Fig. 2. Errors as a function of the number of zones.
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Ke ¼
X

ijk

Ee
ijkðtÞ; ð60Þ

E ¼ Dx
2

X
i

Eki
� �2

þ E?i

 �2

� 	
¼ Dx

2

X
i

Eki
� �2

þ ðGi þ HiÞ2
� 	

; ð61Þ

B ¼ Dx
2

X
i

B?i

 �2 ¼ Dx

2

X
i

ðGi � HiÞ2; ð62Þ
for the case of qb ¼ 2:065 (the corresponding bulk velocity is 0:9c) and k ¼ 1. The numbers of zones for the three coordinates
are Nx ¼ 100; Np ¼ Nq ¼ 50 for qb ¼ 2:065; Nx ¼ 100; Np ¼ 100; Nq ¼ 50 for qb ¼ 7:018, and Nx ¼ 100; Np ¼ 300; Nq ¼ 50
for qb ¼ 22:344. The dashed line in Fig. 3 reproduces the growth rate calculated from the linearized analysis with
Pth ¼ 0:1 described in Appendix B. Although we treat a cold plasma whose initial momentum distribution is given by
(56), the initial setup (57) has particles with some dispersions in the momenta of the order of the width of the momentum
bins Dp ¼ Dq ¼ 0:2. Therefore, we compare the dispersion relation from the numerical simulations with that derived from
linearized analyses with a finite temperature corresponding to the size of the momentum bin. The numerical simulation
seems to reproduce the theoretical growth rate for a given wave number k ¼ 1.
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Fig. 4 summarizes the growth rates for other cases as a function of the wave number of the perturbation. The lines in this
figure represent the growth rates for the bulk velocities 0:9c;0:99c, and 0:999c calculated from the dispersion relation (94)
with Pth ¼ 0:1. The plotted points show values measured from results of the simulation.
4.3. Wakefield acceleration

The wakefield acceleration is a promising mechanism for the acceleration of particles to highly relativistic speeds (see,
Esarey et al. [1], for review). The ponderomotive force of a coherent electromagnetic wave propagating in a stationary plas-
ma, such as an intense laser in laboratory or a light pulse emitted by a certain active phenomenon in astrophysical environ-
ment [16–18], excites a longitudinal electric field and efficiently generates high-energy particles.

To simulate such circumstances, we impose the following boundary condition for the electromagnetic field:
Fig. 4.
corresp
the pla
Gð0; tÞ ¼ A0xL exp �ðt � 2sÞ2

s2

" #
sinðxLtÞ; Hð0; tÞ ¼ 0; ð63Þ
which produces a linearly polarized electromagnetic wave (light pulse) propagating in the þx-direction. Here we have intro-
duced some parameters characterizing simulations; A0 the scale of the vector potential, xL the frequency of the light pulse, s
the duration of the light pulse. For the initial configuration of particles, we consider a cold, homogeneous, stationary plasma
composed of electrons. The momentum distribution is expressed as
f eðx;p; q;0Þ ¼ dðpÞdðqÞ; ð64Þ
which leads to
Ne
ijkð0Þ ¼ Ee

ijkð0Þ ¼
1 for �Dp=2 < pj < Dp=2

and � Dq=2 < qk < Dq=2;
0 otherwise

8><
>: ð65Þ
We treat ions as a neutralizing background, choosing the value of the scale of the light pulse to be longer than the electron
inertial length c=xe but shorter than the ion inertial length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
c=xe.

Some results for the case of A0 ¼ 2:0; xL ¼ 2:0, and s ¼ p=2 are shown in Figs. 5–7. In each figure, the panels represent
the color-coded q-integrated distribution function, the longitudinal electric field, the transverse electric field, and the trans-
verse magnetic field from top to bottom. It is clearly seen that a sinusoidal electrostatic field is excited immediately after the
passage of the light pulse and accelerate electrons, resulting in some bunches of electrons in the phase space. The responses
of the plasma and the electric field to the light pulse is consistent with the previous studies. Sprangle et al. [20] studied this
process by numerically solving equations which treat non-linear interactions of particles and waves (see also, Ting et al.
[21]). They showed that sawtooth-like longitudinal waves associated with some bunches of particles in the phase space form
after the passage of a light pulse. Recent two-dimensional PIC simulations (see, e.g. Kuramitsu et al. [19]) show a similar
The dispersion relation of the Weibel instability. The horizontal axis represents the wave number of perturbation and the vertical axis represents the
onding growth rate. The solid, dashed, and dotted lines corresponds to the case that the bulk velocity is 0:9c; 0:99c, and 0:999c. The points plotted
ne is the value measured from results of the simulation.



Fig. 5. Snapshot of the distribution function and the electromagnetic fields at t ¼ 10.

Fig. 6. Same as Fig. 5, but for t ¼ 100.
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behavior. The behavior is also reproduced in our results, which indicates that the method presented here can treat the cor-
rect behavior of the distribution function of relativistic, collisionless plasmas.

The electron distributions in the momentum space at t ¼ 200 and x ¼ 178; 184 are plotted in Fig. 8. It is clearly seen that
the existence of high-energy electrons up to p ¼ 17mec (the corresponding velocity is equal to 0.998c) at x ¼ 178, where the
strong electrostatic field, i.e., the wakefield, is excited due to the ponderomotive force. At x ¼ 184, on the contrary, there ex-
ists no accelerated electron, since the node of the wakefield is located at this point.

5. Discussion and conclusions

In this paper, we have proposed a new conservative scheme for numerical integration of the relativistic Vlasov–Maxwell
system and performed three test problems, the gyration of particles, the Weibel instability, and the wakefield acceleration.



Fig. 7. Same as Fig. 5, but for t ¼ 200.

Fig. 8. The q-integrated electron distribution in the longitudinal momentum space at t ¼ 200 and x ¼ 178; 184.
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Adopting a semi-Lagrange method, we succeed in developing a scheme that conserves the number of particles and the sum
of the energies of particles and electromagnetic fields. Since the previous scheme [13] solving the relativistic Vlasov–Max-
well system do not treat the dispersion of the lateral momentum of particles, our scheme is the first one that can treat the
dispersion correctly. Results of the simulations clearly indicate that our method succeeds in reproducing detailed behaviors
of the distribution functions in the phase space. Especially, the tail of the distributions where only a tiny fraction of particles
reside seems to be solved with considerably high accuracy, while PIC simulations would suffer from large statistical error
there.

As we noted above, Vlasov simulations generally require more computational resources than PIC simulations do. Further-
more, as previous works [7,23] have investigated, Vlasov simulations suffer from so-called ‘‘filamentation problem”. Ref. [23]
studied wave-particle interactions of a plasma approaching to an equilibrium state using PIC simulation and showed that the
equilibrium is realized through a phase mixing accompanied by formation of filamentary structures in the phase space. In
Vlasov description, particles composing a plasma are treated as a continuous medium, which means that Vlasov equation
can not take account of essential discreteness of plasma. As a result, artificial entropy may arise when a structure with
the characteristic scale smaller than the mesh size is generated in the phase space. Ref. [23] argued that this artificial entropy
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prevents the plasma treated by the Vlasov simulation from following the correct path toward the statistical equilibrium.
Therefore, we need careful studies of long-term evolutions of plasmas by using Vlasov simulations.

Nevertheless, Vlasov simulations provide us detailed dynamics of plasmas in the phase space. Though we deal with the
1D2V relativistic Vlasov–Maxwell system, our method can be applied to the 2D3V and 3D3V cases. Although our scheme
proposed in this paper suffers from numerical diffusion, there is a plenty room for improvement. For example, in order to
integrate advection part of the Vlasov equation, we can use the orbit of the particle located at each vertex of a cell. In other
words, taking account for the deformation of the cell at each time step improves the accuracy of the scheme. In theoretical
investigations into complex behaviors of collisionless plasmas, Vlasov simulations must be a attractive tool to compensate
defects of PIC simulations.
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Appendix A. Evaluation of some integrals

In this section, we evaluate some integrals used to construct the interpolation function in Section 3.4. The first one is the
average of the modified Lorentz factor (8) in the phase space, hCsijk, defined by
hCsijk ¼
1

DpDq

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRs

mÞ
2 þ p2 þ q2

q
dpdq: ð66Þ
To perform the integrations, we introduce a function of the variables p and q described by
g1ðp; qÞ ¼
pq
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q
�

Rs
m


 �3

3
Arctan

pq

Rs
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2
q

2
64

3
75þ p

6
p2 þ 3 Rs

m


 �2
h i

ln qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q� 	

þ q
6

q2 þ 3 Rs
m


 �2
h i

ln pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q� 	
: ð67Þ
Since the differentiation with respect to p and the subsequent differentiation with respect to q of this function leads to
@2g1

@p@q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q
; ð68Þ
one can evaluate the integral hCsi as
hCsijk ¼
g1ðpj þ Dp=2; qk þ Dq=2Þ

DpDq
�

g1ðpj þ Dp=2; qk � Dq=2Þ
DpDq

�
g1ðpj � Dp=2; qk þ Dq=2Þ

DpDq

þ
g1ðpj � Dp=2; qk � Dq=2Þ

DpDq
: ð69Þ
The second integral is the average of the square of the modified Lorentz factor in the phase space, hðCsÞ2ijk, defined by
ðCsÞ2
D E

jk
¼ 1

DpDq

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2
ðRs

mÞ
2 þ p2 þ q2

h i
dpdq: ð70Þ
This integration is straightforward and one obtains
ðCsÞ2
D E

jk
¼ Rs

m


 �2 þ p2
j þ

Dp2

12
þ q2

k þ
Dq2

12
: ð71Þ
The third and forth integrals are defined by
p
Cs

D E
jk
¼ 1

DpDq

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2
q dpdq; ð72Þ
and
q
Cs

D E
jk
¼ 1

DpDq

Z pjþDp=2

pj�Dp=2

Z qkþDq=2

qk�Dq=2

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2
q dpdq; ð73Þ
respectively.
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To evaluate the third integral, we define the following function:
g2ðp; qÞ ¼
q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q
þ

Rs
m


 �2 þ p2

2
ln qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs

m


 �2 þ p2 þ q2

q� 	
: ð74Þ
Since the differentiation with respect to q and the subsequent differentiation with respect to p leads to
@

@p
@g2

@q

� �
¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rs
m


 �2 þ p2 þ q2
q ; ð75Þ
the third integral is written as
p
Cs

D E
jk
¼

g2ðpj þ Dp=2; qk þ Dq=2Þ
DpDq

�
g2ðpj þ Dp=2; qk � Dq=2Þ

DpDq
�

g2ðpj � Dp=2; qk þ Dq=2Þ
DpDq

þ
g2ðpj � Dp=2; qk � Dq=2Þ

DpDq
: ð76Þ
Using the same function, the forth integral is expressed as
q
Cs

D E
jk
¼

g2ðqk þ Dq=2;pj þ Dp=2Þ
DpDq

�
g2ðqk � Dq=2; pj þ Dp=2Þ

DpDq
�

g2ðqk þ Dq=2;pj � Dp=2Þ
DpDq

þ
g2ðqk � Dq=2;pj � Dp=2Þ

DpDq
: ð77Þ
The remaining integrals hpijk and hqijk can be evaluated by a straightforward manner:
hpijk ¼ pj; hqijk ¼ qk: ð78Þ
Appendix B. The relativistic Weibel instability

The dispersion relation of the Weibel instability in both non-relativistic and relativistic plasmas have already been de-
rived in several investigations (see, e.g. Califano et al. [22]). Nevertheless, we review the formulation and the dispersion rela-
tion of the Weibel instability in a relativistic one-dimensional plasma for completeness of this paper.

B.1. Formulation

We assume that the initial state characterized by an unperturbed distribution function f s
0 has no electromagnetic field and

that the space ðxÞ and time ðtÞ dependences of the perturbations are proportional to exp½iðkx�xtÞ�. We then consider how
the perturbation df s on the distribution function and the lateral components of the electromagnetic fields dE? and dB? evolve
according to the relativistic Vlasov–Maxwell system. The linearized relativistic Vlasov equation expressed as
�ixþ ik
p
Cs

� �
df s þ Rs

q
q
Cs dB?

@f s
0

@p
þ Rs

q dE? � p
Cs dB?

� � @f s
0

@q
¼ 0; ð79Þ
and the linearized Maxwell equations
� ixdE? þ ikdB? ¼ �dJ?;

� ixdB? þ ikdE? ¼ 0 ð80Þ
govern the time evolutions of the perturbed quantities. Elimination of dB? in Eq. (79) by using Eq. (80) yields
�ixþ ik
p
Cs

� �
df s þ Rs

q
q
Cs

k
x

dE?
@f s

0

@p
þ Rs

q 1� p
Cs

x
k

� �
dE?

@f s
0

@q
¼ 0 ð81Þ
and the expression for df s,
df s ¼ �
iRs

q

x
qk

xCs � kp
@f s

0

@p
þ @f s

0

@q

� �
dE?: ð82Þ
The perturbed electric current density dJ? is related to the perturbed distribution function df s as
dJ? ¼
X

s

Rs
q

Z 1

�1
dp
Z 1

�1
dq

q
Cs df s; ð83Þ
and necessary to obtain the dispersion relation. We then assume that ions are uniformly distributed in the physical space
with no bulk velocity,
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f i
0 ¼ n0dðpÞdðqÞ; ð84Þ
where dðxÞ represents the delta function, and that electrons have the following form of the initial distribution:
f e
0 ¼ n0

Hðpþ PthÞ �Hðp� PthÞ
2Pth

�Hðqþ P0 þ PthÞ �Hðqþ P0 � PthÞ þHðq� P0 þ PthÞ �Hðq� P0 � PthÞ
4Pth

; ð85Þ
where HðxÞ represents the Heaviside function. The parameter Pth represents the thermal dispersion of the momentum dis-
tribution of electrons, and P0 represents their bulk momentum. This assumption means that only electrons contribute to the
generation of the electric current density. We define the following two integrals:
I1 ¼
Z 1

�1
dp
Z 1

�1
dq

q
Ce

qk
xCe � kp

@f e
0

@p
; ð86Þ

I2 ¼
Z 1

�1
dp
Z 1

�1
dq

q
Ce

@f e
0

@q
; ð87Þ
which contribute to the electric current density dJ?, and evaluate them beforehand.
From the properties of the Heaviside function, the first integral reduces to
I1 ¼ �
n0k2

2Pth

Z P0þPth

P0�Pth

q2dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

th þ q2
q

x2 1þ P2
th þ q2

� �
� k2P2

th

h i : ð88Þ
We then define the function gðqÞ in the form of
gðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1þ P2

thÞ � k2P2
th

q
Arctan

kPthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1þ P2

th

� �
� k2P2

th

r qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

th þ q2
q

2
664

3
775� kPth log qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

th þ q2
q� �

ð89Þ
Since the derivative of this function is
dg
dq
¼ � x2kPthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ P2
th þ q2

q q2

x2ð1þ P2
th þ q2Þ � k2P2

th

; ð90Þ
one can express the integral I1 as
I1 ¼
n0k

2P2
thx2

gðP0 þ PthÞ � g P0 � Pthð Þ½ �: ð91Þ
The growth rate of the relativistic Weibel instability with the bulk velocity 0:9c as functions of wave numbers. The solid line represents the growth
culated from the dispersion relation for cold plasmas (97). The dashed line represents the growth rate calculated from the dispersion relation for
lasmas with Pth ¼ 0:1 (94).



A. Suzuki, T. Shigeyama / Journal of Computational Physics 229 (2010) 1643–1660 1659
On the other hand, the second integral becomes
I2 ¼ �
n0

2P2
th

P0 þ Pthð ÞArcsinh
Pthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðP0 þ PthÞ2
q
2
64

3
75� P0 � Pthð ÞArcsinh

Pthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðP0 � PthÞ2

q
2
64

3
75

8><
>:

9>=
>; ð92Þ
from the straightforward evaluation of the integral.
Using these integrals, the perturbed electric current density is expressed as
dJ? ¼ � i
x

I1 þ I2ð ÞdE?: ð93Þ
Substitution of this expression into Eq. (80) and non-trivial dB? yields the following dispersion relation:
x2 � k2 þxp

n0
ðI1 þ I2Þ ¼ 0 ð94Þ
B.2. Dispersion relation

B.2.1. Cold plasmas
Before we solve the dispersion relation (94) with a fixed wave number k and obtain the frequency x, we simplify Eq. (94)

by taking cold limit ðPth ! 0Þ to clarify whether any unstable mode exists or not. Under the cold limit, the integrals defined in
the previous section becomes
Fig. 11. Same as Fig. 9, but for the bulk velocity 0:999c.

Fig. 10. Same as Fig. 9, but for the bulk velocity 0:99c.
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lim
Pth!0

I1 ¼ �
n0k2

x2

P2
0

1þ P2
0

� �3=2 ; ð95Þ
and
lim
Pth!0

I2 ¼ �
n0

ð1þ P2
0Þ

3=2 ; ð96Þ
respectively. Then, the dispersion relation becomes
x4 � k2 þ 1

ð1þ P2
0Þ

3=2

" #
x2 � k2P2

0

ð1þ P2
0Þ

3=2 ¼ 0: ð97Þ
One of the solution of this equation is a pure imaginary number, which means that this dispersion relation contains at least
one unstable mode. The growth rates of the mode c defined by ic ¼ x versus wave number k for initial bulk velocities
0:9c; 0:99c, and 0:999c are plotted as solid lines in Figs. 9–11.

B.2.2. Warm plasmas
The analysis performed in the previous subsection indicates that there exists an unstable mode. Solving the dispersion

relation of warm plasmas (94), one obtains the growth rate of the Weibel instability for plasmas with finite temperature.
The results for the case of Pth ¼ 0:1 and the bulk velocities 0:9c; 0:99c, and 0:999c are also shown in Figs. 9–11. One can
see that the growth of unstable modes is suppressed in the high wave number regime.
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